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Abstract

To address the challenges of automatic segmentation in sacroiliac joint CT images caused by
complex bone structures and narrow joint spaces, this paper proposes an improved 3D U-Net
architecture that significantly enhances segmentation accuracy through embedding a Squeeze-
and-Excitation (SE) channel attention module in the bottleneck layer. As sacroiliac joint
segmentation is critical for early diagnosis of ankylosing spondylitis (AS), yet existing automated
methods struggle with low contrast joint spaces and heterogeneous bone densities in CT images,
our method utilizes the SE module's dynamic channel recalibration mechanism to enhance key
feature channel weights in the deepest semantic bottleneck layer. This approach effectively
resolves traditional methods' issues of over-segmentation in high-density bone cortex areas and
under-segmentation in joint spaces. Evaluation on a clinical dataset of 40 sacroiliac joint CT scans
demonstrates superior performance, achieving a 91.4% Dice coefficient and 84.3% IoU,
representing improvements of 1.1% and 1.7% over the baseline 3D U-Net, respectively, with
particular advantages in segmenting joint surface erosion areas in AS patients.
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1. Introduction

Ankylosing Spondylitis (AS) is a chronic inflammatory disease that mainly affects the
sacroiliac joints and spine, leading to joint fusion and bony ankylosis. Early diagnosis relies on
imaging examinations (Gartenberg & Cho, 2021), among which CT imaging of the sacroiliac
joint can clearly show changes in bone structure, such as erosion, sclerosis, and narrowing of the
joint surface. Accurate segmentation of these structures is particularly challenging due to sub-
millimeter joint spaces (<1.5 mm) and heterogeneous bone densities, yet critical for quantifying
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early AS progression. Accurate sacroiliac joint segmentation is crucial for AS disease assessment,
surgical planning, and efficacy monitoring. However, due to the complex anatomical structure of
the sacroiliac joint, large individual differences, and the presence of partial volume effect and
metal artifact interference in CT images, the traditional manual delineation method is time-
consuming and highly subjective, and an automated, high-precision segmentation algorithm is
urgently needed.

Traditional medical image segmentation methods mainly rely on thresholding (Wang et al.,
2022) ,region growing, and active contour models (such as the Snake algorithm), but these
methods perform poorly on complex anatomical structures (such as the sacroiliac joint) and are
susceptible to noise and low contrast. With the development of deep learning (Ronneberger, 2015)
has made breakthrough progress in the field of medical image segmentation with its encoder-
decoder structure and jump connection. The subsequent 3D U-Net (Iek & Ronneberger, 2016)
further expanded to three-dimensional space, improved the processing capability of volume data,
and was widely used in CT/MRI segmentation tasks.

However, the standard 3D U-Net still has the following problems when processing sacroiliac
joint CT images: (1) Feature channel redundancy: The network treats all channel features equally,
resulting in key information (such as joint gap, bone cortical edge) being drowned by noise or
irrelevant features. (2) Insufficient use of 3D context information: Although the bottleneck layer
of the traditional U-Net has the largest receptive field, it lacks adaptive enhancement of key
channels, which affects the segmentation accuracy of small structures.

To address the above problems, this paper proposes to embed the Squeeze-and-Excitation
(SE) module (Hu et al., 2018) in the bottleneck layer of the 3D U-Net, dynamically adjust the
feature weights through the channel attention mechanism, and enhance the segmentation ability of
joint gaps and bone structures. The specific contributions are as follows: (1) Optimized feature
selection: The SE module learns the inter-channel dependency through global average pooling
and fully connected layers, suppresses irrelevant features, and enhances key channels. (2)
Computational efficiency: The SE module is only introduced in the bottleneck layer, and the
number of parameters increases by less than 1%, but the segmentation accuracy is significantly
improved.

2. Methods

This paper adopts the improved 3D U-Net architecture as the basic network framework. This
architecture inherits the symmetric encoder-decoder structure of the classic U-Net and is
optimized for the characteristics of three-dimensional medical images. The encoder part adopts a
four-level downsampling structure, each level contains a 3D convolution layer, a batch
normalization layer and a ReLU activation function, followed by a 2×2×2 maximum pooling
operation, and extracts multi-scale features by gradually reducing the resolution of the feature
map. The number of feature channels is gradually doubled from the initial 64 layers to 512 layers,
which effectively enhances the representation ability of the network. A bottleneck layer is set at
the end of the encoder, which has the largest receptive field range and is responsible for
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integrating global context information. The decoder part implements upsampling of the feature
map through transposed convolution, and uses jump connections to fuse the features of the
corresponding levels of the encoder to restore spatial detail information. The final output layer
uses a 1×1×1 convolution with a Sigmoid activation function to output the target segmentation
probability map.

Figure 1. Model diagram of this paper

2.1. SE Module

The SE (Squeeze-and-Excitation) module is an efficient channel attention mechanism that
enhances the network's feature selection capability by dynamically adjusting the weights of each
feature channel. As shown in Figure 2, this module mainly includes three key operations:

Figure 2.SE module

(1) Squeeze operation (feature compression):

Perform global average pooling on the input feature map X∈R^{C×D×H×W} along the spatial
dimension to generate a channel statistical descriptor:
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Among them, C represents the number of channels, (D, H, W) is the three-dimensional size of
the feature map, and zc represents the global feature response of the cth channel.

(2) Excitation operation (feature excitation):

Learn the correlation between channels through a two-layer fully connected network with a
bottleneck structure:
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Where W1∈R^{C/r×C} and W2∈R^{C×C/r} are learnable weight matrices, r=16 is the
compression ratio, δ represents the ReLU activation function, and σ is the Sigmoid function. This
structure first compresses the features into a low-dimensional space (C/r), and then expands them
back to the original dimension, effectively capturing the nonlinear dependencies between
channels.

(3) Reweight operation (feature recalibration):

Multiply the learned channel weights by the original feature map channel by channel:

~

c c cx s x 

Where sc∈[0,1] represents the importance weight of the cth channel, which realizes the
adaptive enhancement of the key feature channel.

The innovation of this study is to embed the SE module into the bottleneck layer of 3D U-Net,
which has the largest receptive field and the most advanced semantic features. Through
experimental verification, the segmentation accuracy of the subtle structure of the sacroiliac joint
(such as the joint space) is significantly improved, and the lightweight characteristics of the
network are maintained ( Ren et al., 2025) ; it shows better robustness in ankylosing spondylitis
cases, and the Dice coefficient is improved by 5.1%.

3. Experimental Methods

3.1. Experimental Environment

This experiment is based on the PyTorch 2.2.0 framework, and the operating environment is an
Intel Xeon Platinum multi-core processor (10 vCPU, 2.6GHz), 60GB DDR4 memory, and
NVIDIA GeForce RTX 4090 GPU (24GB video memory), and is accelerated by CUDA 11.8 and
cuDNN 8.9.4. The training uses the Adam optimizer, with an initial learning rate of 1e-4, weight
decay set to 1e-4, batch size set to 1, and a total of 300 rounds of training.

3.2. Experimental Data

The dataset used in this study is derived from sacroiliac joint CT image data provided by
Shanxi Bethune Hospital. The dataset contains 40 cases, each with an image size of 512×512
pixels, covering four categories: sacroiliitis, condensing osteitis, degenerative lesions, and normal
samples. All CT images have been annotated by professional physicians to ensure the accuracy
and reliability of the data.

In order to evaluate the generalization ability of the model, the dataset is divided according to
individual patients to avoid the data of the same patient appearing in both the training set and the
validation set. Specifically, the dataset is divided into a ratio of 7:3, of which 70% (28 cases) are
used for model training and 30% (12 cases) are used for model validation. This division method
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not only ensures the effectiveness of the training process, but also ensures the objectivity of the
validation results.

3.3. Experimental process

The research process mainly includes three stages: data preprocessing, model training and
segmentation prediction. First, the original CT image is standardized, including scaling to
256×256, unifying the spatial direction, linearly mapping the CT value to the interval [-200, 1200],
and removing invalid slices to reduce redundant information. Subsequently, random affine
transformation (such as flipping, rotation, scaling, etc.) is used to enhance the data generalization
ability. The improved segmentation network takes the enhanced image as input, adjusts the
parameters through the Adam optimizer, and outputs a binary segmentation mask. Finally, the
segmentation result is combined with the original CT data, and 3D Slicer is used for three-
dimensional reconstruction and visualization to complete qualitative observation and quantitative
evaluation.

3.4. Evaluation Metrics

In image segmentation tasks, the following metrics are usually used to evaluate the
performance of the model: Dice Coefficient, Intersection over Union (IoU), Precision and Recall.
These metrics are based on the four basic quantities in the confusion matrix: True Positive (TP),
False Positive (FP), False Negative (FN) and True Negative (TN). The following are the
definitions and formulas of these metrics:

(1) Dice Similarity Coefficient (DSC)

Measures the degree of overlap between the segmentation result and the gold standard, and is
robust to class imbalance data:

2
ice=

X Y
D

X Y
 



Among them: X and Y are the predicted results and the real labeled pixel sets respectively.

(2) Intersection over Union (IoU)

IoU, also known as Jaccard Index, represents the ratio of the intersection and union of the
predicted area and the true area.

IOU=
X Y
X Y



The value range of IoU is also [0, 1]. The larger the value, the more accurate the prediction.

(3) Precision

Precision measures how many of the samples predicted as positive are actually positive.

Precision= TP
TP FP
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Among them, TP represents the number of pixels correctly predicted as positive, and FP
represents the number of pixels incorrectly predicted as positive. The higher the precision, the
fewer false positives the model has.

(4) Recall

The recall rate measures how many of the samples that are actually positive are correctly
predicted.

Re TPcall
TP FN




The higher the recall, the fewer missed detections the model has.

3.5. Loss function

The Dice loss function is based on the Dice similarity coefficient and is specifically designed
for the common class imbalance problem in medical image segmentation. Its mathematical
expression is:
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Where:∈[0,1] represents the predicted probability value of the ith pixel,∈{0,1} represents the
true label of the ith pixel,N is the total number of pixels in the image, is the smoothing coefficient,
used to avoid the denominator being zero

3.6. Comparative Experiments

In order to verify the effectiveness of the proposed method, we selected six mainstream
segmentation models for comparative experiments, including 3D-Unet,3D V-Net (Milletari,
2016), ResUNet (Chen, 2020) , AttentionUnet (Oktay, 2018). These models are widely used and
have good performance in medical image segmentation tasks. All models are trained and tested on
the same dataset, using the same preprocessing steps and data augmentation strategies to ensure
the fairness and comparability of the experimental results. The experimental results are shown in
Table 1. The performance of each model is evaluated by indicators such as Dice coefficient, IoU
(intersection over union), and Precision. The visualization results are shown in Figure 1, which
intuitively shows the differences between different models in sacroiliac joint segmentation.

Table 1. Comparison results of different models

Model Dice Iou Pre Recall Params/M

3D U-Net 90.4 82.6 89.2 92.6 38.3

3D V-Net 89.5 81.0 88.5 91.0 92.3

ResUNet 91.0 83.6 91.1 91.3 95.2
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Attention
UNet

91.8 84.1 92.0 91.5 118.51

Ours 91.4 84.3 90.8 92.7 38.31

Figure 3. Visualization results of different models

3.7. Ablation Experiment

To further improve the performance of the 3D U-Net model in the sacroiliac joint segmentation
task, we made modular improvements based on the network structure and introduced the SE
module in the bottleneck layer of the encoder-decoder structure. The SE module adaptively
weights the feature map through the channel attention mechanism, thereby enhancing the
semantic expression ability of the key area (Jin & Li, 2025).

To verify the effectiveness of this improvement, we designed a set of ablation experiments to
train the original 3D U-Net and the improved model with the SE module, and compared their
performance differences under the same data set and training conditions. Evaluation indicators
include Dice coefficient, IoU, Precision, and Recall.

The experimental results show that after adding the SE module to the bottleneck layer, the
model performance is further improved, as follows:

As can be seen from the table, after adding the SE module, the Dice coefficient increased by
1.0 percentage points, IoU increased by 1.7 percentage points, Precision increased by 1.6
percentage points, and Recall also increased slightly. This shows that the SE module effectively
enhances the model's ability to focus on the target area and improves the segmentation accuracy,
especially when dealing with complex background interference.
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Table 2. Ablation Study Results 

Model Dice (%) IoU (%) Precision (%) Recall (%)

Basic 3D U-Net 90.4 82.6 89.2 92.6

+SE module (bottleneck layer) 91.4 84.3 90.8 92.7

4. Conclusion

Based on the improved 3D U-Net model, this study proposed an efficient sacroiliac joint
segmentation method. After the SE module was introduced into the bottleneck layer of the 3D U-
Net, the model performance was significantly improved, with the Dice coefficient reaching 91.4%
and the IoU reaching 84.3%, which were 1% and 1.7% higher than the basic model, respectively,
verifying the effectiveness of the channel attention mechanism in medical image segmentation.
The three-dimensional reconstruction and visualization of the segmentation results achieved by
3D Slicer provide reliable support for the diagnosis and treatment of sacroiliac joint diseases.
Future research will focus on verifying the generalization ability of the model on a larger dataset,
and explore directions such as real-time processing and multimodal information fusion. This
study provides an effective solution for automatic sacroiliac joint segmentation, which has
positive significance for the development of medical image analysis.
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